
We thank all the members who wrote or called to
see if ye editor had blown away during the recent
hurricane, the center of which passed about ten

miles east of our office. Except for blowing down a large part of the Mickey
Mouse Power & Light Co.'s new power line (Mickey Mouse P&L can't do anything
right), the hurricane did less damage than a hard winter nor'easter. When we
heard that the eye of the storm had come that close to home, we visualized chaos
and desolation; when we drove home a day later, expecting ruin, we found nary a
shingle shifted, nary a board out of place. The hurricane was a pussy cat. After
dancing a thankful jig, we drove to the Post Office and found a letter from
Commodore approving our request for a development Amiga and its documentation.
Day of despair, day of jubilee!

ISPUG's disk library and files wouldn't have been wiped out if the hurricane had
been a tiger. We took SuperPET, two disk drives, and our files with us when we
evacuated, and spent a useful day in a motel working on this issue. SuperPET is
transportable, more or (groan!) less...

Amiga and Expiration
So long as we have enough members to pay for the operation, we'll continue to
publish the Gazette, which, as you may guess, will soon carry a comment or two
on the Amiga, though we'll still concentrate on SuperPET. If your address label
is redmarked, bless us with a check and send your address label or a copy so we
can identify the culprit. Don't fill out the application form if you send the
mailing label; just check the RENEW block.

If any of you have interest in a new publication dedicated to the Amiga, please
drop us a note. We haven't made up our mind, but we'd like to be encouraged...

ANOTHER LANGUAGE FOR SUPERPET: Our resident genius, John Toebes, and his co-
TOEBES and LEVIN RELEASE FORTH worker, Dr. Hal Levin, have released SuperPET

SuperFORTH, a full implementation of the lan
guage. Before you rush out to buy it, you should get the book "Starting Forth,"
by Leo Brodie; John recommends you also read "Thinking Forth," by the same auth
or. The language comes on one 8050 disk or two 4040s, and holds, in addition to
the language files, an introduction, a glossary, and ten manual sections, plus
an index to the manuals. You'll need the books recommended; the implementation
assumes a beginning familiarity with the terms, constructions, and techniques
of Forth.

ISPUG acts as the distributor for the language; technical support is furnished
to purchasers by Levin and Toebes. For such support, write: John Toebes, VIII,
120H Northington Place, Cary, N.C. 27511.

As the authors note, many Forth implementations break an entire disk drive into
1024-byte sections, which is fine for Forth, but means that no other types of
files can co-exist on that disk. Toebes and Levin have made their FORTH DISK
compatible with the Commodore DOS. It can be read not only from Forth but from
any Waterloo editor or language. The FORTH DISK is implemented as a REL file
under the DOS; this usage is transparent when you are in Forth (you don't have
to fuss with REL file commands). You can BACKUP any disk or file and may copy
any programs or files with the Commodore DOS. The system is compatible with all
Commodore drives. In addition, you may store and retrieve any normal 6809 files

SuperPET Gazette, Vol. II, No. 7 -182- October/November 1985

on the same disk. You can even write a program in one of the Waterloo languages
which modifies a Forth file.

The price of the language is $35 U.S., of which $25 is remitted to the authors;
the remainder goes to ISPUG for copying and distribution. The disks are not
copy-protected. For your copy, write Editor, PO Box 411 » Hatteras, N.C. 27943.
Please state disk format (4040 or 8050).

ONCE OVER LIGHTLY Louis Mittelman, Jr. of Gordonsville, VA, writes us that
Miscellany the Smithsonian Institution, National Museum of American

History, was most happy to accept his old PET 2000 and
other related items for its collection. Anyone who thinks he has a rare computer
item and wants to donate should get in touch with Dr. Uta C. Merzbach, Curator,
Division of Mathematics. Sorry, Louis didn't give us a phone number or address.

BITS & BYTES HAS A BUG Our erstwhile Associate Editor, Gary Ratliff, has a
sick computer, and is unable to provide a Bits & Bytes column for this issue. We
shipped him a set of schematics and a prayer, but his SPET is still bugged.

HAS CANADA FLOATED AWAY? Gee, we haven't been in Canada for eight years; it
then was part of the North American continent. Our membership brochure says that
ISPUG dues in North America are $15 per year, and that overseas dues are $25.
Canadians keep sending us $25. Sigh. Guess we better head North and check for a
new ocean. If non-swimmers send us $25, we either remit $10 or extend membership
for 20 months...

BACKUP POWER Our local power company we call The Mickey Mouse Electric Pow
er and Candle Co.; not a week goes by but we are browned- or blacked-out. Seems
that ocean salt deposits on the transformers; they short out if it doesn't rain,
and burn down the poles. We've therefore had backup power for our computers and
drives since 1980, and haven't lost a single byte to power problems in all that
time. Our first rig was internal battery backup, a unit no longer made or sup
ported. When these units began to show signs of old age, we knew we'd soon have
to replace them, and decided to get an external unit, which should have the ad
vantage of being useful (if properly chosen) with any future computer or disk
drives. So we researched what was available, how it performed, what it cost, and
report the results:

A backup unit (called Uninterrupted Power Supply, or UPS, in the grand tradi
tion of saying janitors are sanitary engineers) should be sized to whatever rig
you plan to have within three to five years; we thought we'd be wise to allow
for a hard disk. If you do this, you soon find out that hard disks require much
better performance from a UPS than do floppy drives.

Your first step is to determine the wattage output you need. SPET demands 117
volts at 1.0 amp; an 8050 drive, 117V at 0.5 amps. Well, 117V x 1.5 amps demands
175.5 watts. Printers and other heavy-demand devices shouldn't be put on a UPS.
You find most firms include in their product line a small UPS with a 200-watt
capacity, good for from 5 to 25 minutes at 200 watt draw (performance depends a
lot on how often you use the disk drive, on how old the battery is and on how
well charged by the charger inside the UPS). Then you find that the performance
of the units varies all over the lot. Some (those made by Tripp Lite), are for
blackout protection only, and let the computer crash at brownout (low voltage).
We tried one and returned it. Brownout is more common than blackout (complete
power loss).

SuperPET Gazette, Vol. II, No. 7 -183- October/November 1985

Some units kick in when line voltage drops to 108 volts; some at 80. In our ex
perience, the higher the voltage at which the unit kicks in, the better. A good
unit should time delay return to the line (voltage often fluctuates during a
brownout). We wrote six firms (Kalglo, Melrick, PTI, Qubie', SAFT, Sun), got the
specs, tested the three units which seemed best in performance, and found that
not a_ one, even the most expensive, would protect SuperPET against brownout.
Half the time when the lights grow dim and the voltage flickers, SuperPET will
crash, despite the UPS. Yet all units tested protected us against blackout with
no problems. It's obvious that the units need a voltage drop cutout which simu
lates a blackout to be useful with SPET.

Concept: plug the cutout into the wall outlet; plug the UPS into the cutout. If
voltage drops, the cutout switches off line power (simulates a blackout). We're
dam sure it will work _if we can find the cutout! So, help! If any of you know
of such a cutout, please write or call. Tell us who makes it and where we can
buy it, please. We'll pass the info along. Until we find a good cutout, we don't
recommend that anybody buy a UPS for brownout protection on SuperPET.

CHAINING BUG IN BIG mBASIC PROGRAMS Frank Brewster long ago reported that
mBASIC wouldn't pass matrices properly when programs were CHAINed. Waterloo went
to work and issued a patch, which seemed to fix the problem (see I, 209) • Now
Frank reports that he wrote a huge program with a lot of string matrices; that
some were passed when he CHAINed, and that some weren't. He found no predictable
pattern in the failure to pass string arrays to the new, chained program. If any
of you encounter this problem, please send us a disk copy of the programs so we
can explore it and pass a defined bug along to Waterloo.

OS/9 PROBLEM WITH THREE BOARD SUPERPETS SOLVED We reported previously a mys
terious problem in which 0S/9 failed to run on some early, 3-board SPETs. Guru
Avy Moise of TPUG and our own guru Terry Peterson collaborated to diagnose and
cure the problem. It seems that the refresh of the 64K of banked RAM on these
early 3-board machines is handled differently than the refresh of the 32K of
user memory (refresh means that the transistors in RAM are periodically rechar
ed to maintain their state; if this isn't done, electrons leak and memory goes
phhhht). The refresh in the 64K switched banks depends upon the 60-per-second
interrupts which, among other duties, sense the keyboard; if these are suspended
long enough, bank RAM is not refreshed— and goes blaaah. The loading routine for
OS/9 suspended such interrupts (SEI for you assembly language types) just long
enough for this to happen. Once he and Avy and diagnosed this, Terry P. revised
his loader to enable interrupts during loading and called us to happily report
that the problem is gone. Congratulations to Terry and Avy for a fine piece of
sleuthing. Anyone who has trouble loading 0S9 on an old 3-boarder should get in
touch with TPUG to get a copy of the new loader.

SHARP DEALER Bill Cronkhite of Pasadena tells us that when he ordered a new
Amiga with 512K, he asked if the dealer stocked 3.5-inch double-sided disks. The
dealer replied, "No. Why do we need those?" Why, indeed. Well, give the dealer
credit; at least he knew Bill wanted to buy a computer, not a girl friend.

2031 ADDRESS CHANGES Last issue, we covered address changes on 4040, 8x50 and
1001 drives (p. 166 ff). Paul Matzke sent us address change data for the 2031 ,

which we show at left. Data in < > are ASCII code
Change device from 8 to 9 numbers (see article last issue for using them in
M-W<119X0X2X41 ><73> BEDIT). All commands except the first <119> are the

SuperPET Gazette, Vol. II, No. 7 -184- October/November 1985

CR18 CR19 Device
in in 8
out in 9
in out 10
out out 11

'.G. Cordes, who has
.evice number are the

same as those used on the 4040 and 8x50. Hard wired
Change device from 9 to 8 address changes are made near the middle of the 2031
M-W<119><0><2><40><72> circuit board at diodes CR18 and CR19* By removing

them in the proper order, you can get several diff-
>. erent device numbers, per the table shown at left.

The M-W commands are software commands; a 2031 drive
will default to device 8 if you switch to 6502 or
turn the drive off. Diode changes are permanent.
As we wrote this note, we received a letter from Dr.

A GLANCE OVER THE FENCE Whilst P.J. Rovero has a sick SuperPET, he's been
using some G.I. Zenith PCs running MS DOS, and comments: "I've been frustrating
myself on MS DOS. The interpreter environment provided by Waterloo is _so much
nicer than the Microsoft Basic and Fortran compilers. Basic programs which run
without error in the interpreter fail regularly after they're compiled, with no
meaningful location of the problem. There's no Fortran interpreter, so all the
debug routines have to be recompiled into the program under test. What a pain in
t h e -- ! To be sure, there are a few nice things: compiled programs (if they
work) are very fast, and the Zenith Basic Screen Editor (BSE) is very powerful
and easy to use (it's an editor for everything, not just Basic). I've used its
macros to reformat data files output by one program as input for another."

GHOSTS BEYOND THE RIGHT MARGIN In the Waterloo MicroEditor, or in any form
of Joe Bostic's BEDIT, write a full line of 80 x's. Then give a CHANGE command:
c /%7YYYYYYYYYYYYYYYYYYYY. The change will preface the first x, at the start of
line, with with 20 Y's. Question: How many x's remain on the line? If you say
60, we're sorry to say you're wrong. You still have 80, but you can't see the
last and rightmost 20. You can prove that with another CHANGE command: c*/Y/
— which will change all Y's on the line to nulls. Lo!— you again have 80 x's on
the screen.

Now, try the same thing, using the DELETE key instead of the second CHANGE com
mand. Sorry, Charley, you lose the rightmost 20 x's. Lesson: when using CHANGE
commands, you can easily create hidden text and save it either to disk or to
printer. There's an easy way to get rid of such hidden text: cQ0/%.%*/ , which
says to change the 80th and subsequent characters on a line to a null (%. is any
character, %* is the previous character, repeated 0 or more times). Is there any
other way? Yes, you can edit a line with any key. Any change made will eliminate
the 81st and subsequent characters. Lines may be up to 254 characters long...

If you think the ghost characters are a nothing but a problem, we suggest a few
ways in which they're useful. Suppose you get over-80-character lines from a
teleconversation and want to print only the middle of the file. Get it into the
editor, delete the start and end; send the remainder to printer unedited. If
your printer is set to do a CR when the carriage hits the right-hand carriage
stop, you can print the long lines.

BEDIT makes the long lines even more useful. Suppose you want to underline some
words in text (we won't complicate this with boldface), and further that you use
the accent grave (', or shifted @) to mark the start and end of underline, as we
do on'underline these words.'Suppose further that your printer takes ESCAPE 4 as

SuperPET Gazette, Vol. II, No. 7 -185- October/November 1985

the command to start underline, and that ESCAPE 5 commands the end of underline.
We now issue a CHANGE command: *c /"/ <27>4» which says to change the first of
the accents to the "start underline" sequence. We follow that with another com
mand to change the second accent to a STOP underline. Then we PRINT the page to
printer. The underlined line above looks like this, on screen, at output:<

do on <27>4underline these words.<27>5 Suppose further that your printer takes E

Though the original text is pushed beyond the right margin, it's still there. We
print the line despite the fact that we cannot see it all. Of course, you would
not do this manually, but with an EXE file. We're sure some of you'll find even
better ways to use the long lines capability in the editors.

API. CHARACTERS ON THE 4022 PRINTER Paul Rundle of Ajax, Ontario sent us a disk
containing programs which will output APL characters to a 4022 printer. We al
ways test programs before we issue them on ISPUG disks, but have no access to a
4022. Whoever asks first (and promises a test report) will get a copy of the
disk for free. Write ye editor.

SAT GOODBYE TO ACCIDENTAL BYE Roger Bassaber, our faithful correspondent in
or, the distant Indian Ocean, sent a small pro-

How to Patch OFF gram which changes the BYE in any language to
OFF. If ever you lost a program in mBASIC by

by saying BYE to the editor and instead kissing your work goodBYE, take the two
minutes needed to run the program below. Forever after, you exit mBASIC only on
an OFF. Roger, preferring OFF, has patched all his languages to quit on OFF.

We located two BYEs in mBASIC, one beginning at $0b9b; the second at $80f3 bytes
from the start of the disk file. The first controls exit from language; the sec-
und from the microEditor. The program below patches the language exit command to
OFF; you can as easily change the mED exit command to any three-letter word you
may fancy. Roger reports he has patched Cobol, Fortran, and Pascal. Revise the
program below to stop searching for or patching BYE after it is first found in
any of those languages.

Note that we get a long string of code at each gulp (using LINPUT), ending the
string only when LINPUT encounters a CR. This way, we input several hundred to
several thousand bytes at a time. The program runs in about two minutes. If you
substitute GET (and input one character at a time) you'll need some 30 minutes.

100 ! fastoff:bd.
110 print chr$(l2);
120 input "Enter language to patch (in upper case): ", lan$
130 open #2, "disk/1." + lan$ + ",prg", input ! Old mBasic in drive 1.
140 open #3, lan$ + ",prg", output ! New file created on drive 0.
150 print chr$(12);"Bytecount is:";
160
170 on eof ignore
180 loop
190 linput #2, line$
200 if io_status then quit
210 if bytecount < hex('0b9e') ! Limits search only to language BYE.
220 x=idx(line$,"bye")
230 if x then line$(x:x+2)="off" : print "Found!";

SuperPET Gazette, Vol. II, No. 7 -186- October/November 1985

240 endif
250 bytecount=bytecount+len(line$)+1 ! Add CR, not counted in LENgth.
260 print bytecount;
250 print #3, line$! Add CR stripped on input.
260 endloop
270 print #3,line$; ! Print last line without CR.

'Twould appear that mBASIC commands are in table form, and that you may amend
the table by simple substitution. Neither BYE nor OFF can be abbreviated; both
are three-letter commands. We'd suspect that anybody who tries to substitute
ERAse for the word SCRatch, or to amend any command with another of different
length, may end up in deep trouble.

THE ONLY VIRTUOUS VIRGIN IN THE LAND The fairytale goes that a stupid king,
or, having found a virtuous virgin, pro-

Perceptions of Shapely Structures claimed her the only one in his land,
which so enraged the rest of the vir

tuous virgins that they conspired to have her burnt at the stake as a witch. We
can't find any virtuous virgins any more (except for that extremely ugly third-
grader down the street), but we do know how outraged they felt. It isn't fair
to assign any particular quality solely to one person— or to one computer lan
guage, for that matter. Yet it doth appear that there is a conspiracy to assign
all virtues to that aging virgin, Pascal; paramount amongst those virtues being
her structure. Frankly, we don't think the old girl's structure is as attractive
as that of some of the younger languages, which are shapely indeed. We'll demon
strate what we mean and then examine the idea that you simply must study Pascal
to grasp other, structured languages, such as 1C'.

In Gonnet's book on algorithms and data structures (see separate article this
issue) we found the following Pascal fragment, which we copied most carefully
(semicolons and all) and later translated to microBASIC. It's part of an algo
rithm to perform an interpolation search. Is the structure explicit and clear?

while (set[high].k => key) and (key > set[low].k) do
begin
index:=trunc((key-set[low].k)/(set[high].k-set[low].k) * (high-low)+low;
if key > set[index].k then low := index + 1
else if key < set[index].k then high := index-1

else low := index
end;

if key = set[low].k then found(set[low])
else notfound (key);

As with most structured languages, Pascal may be formatted to the user's whims.
Will the WHILE loop be lucidly explicit no matter how the lines are formatted
and indented? (see an ENDWHILE?); are the ends of IF equally resolute and clear?
Dangling and ambiguous ELSE clauses are one of the curses of the language. The
problem is easy to define: Pascal often does not explicitly end its structures;
the end must be inferred. Often in published Pascal code we see the structure
dive into an abyss of uncertainty, never to be seen again. This is a paragon of
structured languages? Let us compare the structured microBASIC translation:

while (set(high) => key) and (key > set(low))
fraction = (key-set(low)) / (set(high) - set(low))

SuperPET Gazette, Vol. II, No. 7 -187- October/November 1985

index = ip(fraction * (high
if key > set(index)

high = index + 1
elseif key < set(index)

high = index - 1
e 1 se

low = index
endif

endloop
if key = set(low)

print "Entry found"
else

print "Not Found"
endif

The beginning and end of each structure is explicit. No matter how the program
is formatted it is not ambiguous. Pascal teaches good structure? What does the
second example teach? Somehow, we find the second virtuous virgin a bit more
virtuous than Pascal. Lately, we've been exploring some other languages: True
Basic (written by the folks who wrote the first BASIC), BetterBasic (which owes
much to Pascal), Basic 09 (very similar in form to mBASIC), and 'C' itself. Very
frankly, we think the structure in most of them knocks the virtuous and structu
red socks off old dame Pascal. She never was very pretty; she is garrulous and
an utter shrew about data types and syntax.

It appears we are not alone in this opinion. Glenn Hart reviewed True Basic in
the October '85 issue of Creative Computing, and said: "True Basic includes
structured programming constructs superior even to those of Pascal or C." If
someone out there should object that no Basic ever can match Pascal's data types
and matrix handling, please read the review of BetterBasic in the October Dr.
Dobbs, which concludes that BetterBasic matches Pascal in both features— and has
superior structure. In short, who needs grumpy old dame Pascal?

There are a lot of other virtuous, well-structured virgins roundabout. It is
high time their shapely structures and accomodating natures were appreciated;
that academics and computer-science types, saturated in Pascal, realize that
time is passing by that fussy crone, even though she is dearly beloved by cur
riculum directors from coast to coast.

* * *
STRUCTURE AND 'C' We became interested in 'C' many months ago, and finally
screwed up courage enough to read "The C Programming Language," by Kernighan and
Ritchie. We expected it to be dull, complex and academic, written in High Abys
sinian Greek; we were astounded to read simple, lucid text well-illustrated with
copious examples— a model of its kind. So we bought "The C Programming Tutor,"
by Wortman and Sidebottom (not all Sidebottoms are bankers, Bodsworth) and again
hit the jackpot. We've not read a simpler, clearer, better tutorial for any lan
guage. (if you're interested in 'C', we recommend both books highly.) At its
simpler levels, 'C' turned out to be easy if you are familiar with any language
which is structured.

We found 1C' easy to follow once you understand how 'C' uses curly braces to de
marcate a block of code. We demonstrate with part of a binary search algorithm
in microBASIC and in 'C' (the /* */ symbols mark a comment in 'C'):

-low)) + low

! Comment: Somehow this language
! manages very well with nary a
! semicolon to mark the end of any
! statement. Why does Pascal demand
! them? So you can chase syntax errors?

SuperPET Gazette, Vol. II, No. 7 -188- October/November 1985

In microBASIC

loop
mid# = (low# + high#) / 2
if search$ < tableword$(mid#)
high# = mid# - 1

elseif search$ > tableword$(mid#)
low# = mid# + 1

else
found# = 1

endif
until low# > high# or found#

while (low <= high) {
mid = (low + high) / 2 ;
if search < tableword(mid)

high = mid - 1 ;
else if (search > tableword(raid))

low = mid + 1 ;
else

return (mid) ; /* see below */
} /*this curly brace means 'endwhile'*/
return (-1) ; /* see below */

Once you are accustomed to the notion that curly braces set off the beginning
and end of a block of code more than one line long, the similarity in structure
of the two languages is striking. The commented RETURNS in 'C', above, are in
structions to send the values stated back to the calling routine and to QUIT the
function. If search succeeds, RETURN sends back the value of the variable "mid”.
If search fails, it sends back a -1 . We don't see why anybody must study Pascal
to understand 'C', especially when 'C' is not strongly data typed and Pascal is.

If you get to know any of the virtuous structured virgins, you should be able to
snuggle right up with 'C'— except, perhaps, for the virus of the semicolon pox,
which evolved on the right margin of an ancient teletypewriter or perhaps on a
40-column screen...and then festered into the present plague.

* * *

THE EVOLUTION OF THE SEMICOLON POX Breathes there a programmer who has ever
written a two-page program in 'C' or Pascal without a syntax error generated by
a missing semicolon? Confine yourself to 40 columns or less and say:

writeln('This is a long print statemen
t.');

{Woops! We're at right margin!}
{So we use another physical line}

Early on, the decision was made to end logical lines with a semicolon so that
long statements could occupy two or more physical lines. The Pascal program at

left uses one "writeln" statement to
begin
page;
cr:=chr(l3);
writeln('Physical Line 1,',cr,
'Physical line 2,',cr,
'Physical line 3>'>cr,
'And a 4th, ended by a semicolon.');
• • •

end.

print four physical lines to screen,
and does it within the limits of a 40-
character terminal. Obviously there was
another option (sadly, it wasn't taken)
to mark the continuation of a logical
line by a special symbol, such as the
ampersand "&". Some languages take this
opposite route; a continued line then
is marked like this: writeln('We con'&
&'tinue this line')— which needs no

semicolon. Now that the 80-column screen is with us, do we really need a semi
colon to end every complete statement?

Because we're no longer squeezed for space, it'd be far easier to use an occas
ional & or \ on those rare long lines, rather than drudging in a semicolon on
every complete statement. Sigh. And so doth the past inflict upon us the semi
colon pox, from which God deliver us one day. We doubt that the pox ever will be
cured in Pascal, for, having chosen semis, Niklaus Wirth then connected such

SuperPET Gazette, Vol. II, No. 7 -189- October/November 1985

structures as IF.. .ELvSEIF.. .ELSEIF.. .ELSE as a single logical statement, the end
of which you must define with a semicolon. Life need not be poxed— a number of
languages handle the same constructions with nary a semicolon, which indeed does
prove that the semi is a pest born of poor design.

Unfortunately, old habits die hard. It may be decades before the semicolon pox
is extinct. But there is hope. Ever notice that you can TAB only from left to
right on your SuperPET? Why? It's a habit carried over from mechanical typewrit
ers, in which a coil spring pulled the carriage from left to right. There was
utterly no way to TAB from right to left, against spring tension. Thirty years
after the mainframe computer was introduced, someone finally realized that com
puters don't use carriage springs... A few computers now let us use SHIFT TAB to
tab from right to left... The past has a long, cold grasp, not easily dissolved
by time.

A PROGRAM TO SEND FILES TO A Last issue, we printed a program received from
PARALLEL PRINTER Josh Rovero showing how to use SuperPET's user
by P.J. Rovero port for output to devices employing the Cen

tronics parallel protocol; we print this issue
a program which you may assemble and link to output any disk file to a printer
employing that protocol. It loads and runs at main menu. See last issue for def-
inions of registers, procedures, and wiring diagrams.

8
The user port connectors you'll need are available from AB Computers [252 Beth
lehem Pike, Colmar PA 18915 : (800) 822 1211]. The price in the latest catalog
is $2.30. Centronics plugs and ribbon cables (40 conductor) are available pretty
widely from electronics suppliers. The 6522 VIA chip is also available from AB
Computers for $5*00. Josh hasn't had to replace it in the 8032/SPET, but did re
place it on his Pet 2001 . So long as only TTL voltages (0-5) and loads are seen
by the VIA, he advises you should not have any problems. Note that Josh employs
John Toebes' CALL MACRO, as published in Vol. I, page 158.

;Program sends file thru simulated Centronics port. By P. J. Rovero, 20 May 85.

;Accomodates either KSTR0BE/NACK or NSTR0BE/BUSY protocols. Connect the NACK or
;busy line to CA1 (user port pin B). Consult your printer manual for guidance on
;choice of protocol. Gemini 10-x works fine with either one noted above.

xref fputchar_,putchar_,fgetchar_, getrec_, printf_, putnl__,openf_,closef_
xref errorf_,eof_

equ $0000 ;Constant,
equ $0032 ;Return to menu w/o reset.

zero
service

:VIA addresses
port Aca1 equ $e841
ddra equ $e843
acr equ $e84b
perif equ $e84c
ifr equ $e84d
port A equ $e84f

;include<call_macro>

;Port A with CA1 handshake.
;Data Direction register.
;Auxiliary control register.
;Peripheral control register.
;Interrupt flag register.
;Port A without handshake.

SuperPET Gazette, Vol. II, No. 7 -190- October/November 1985

start
promptl

successl

wrapup

set via

call printf_,#title
call printf_,#quest1
call getrec_,#in_file,#16
std len_in
addd #in_file
tfr d,x
clr ,x
jsr putnl_
call openf_,#in_file,#in_mode
bne successl
call printf_,#error1
jmp promptl
std in__byte
jsr set_via
ldd newline
std char
jsr send_it
loop

call fgetchar_,in_byte
std char
call eof_,in_byte
quif ne
jsr send_it

endloop
ldd newline
std char
jsr send_it
call closef_, in_byte
call printf_,#final
Ida t_acr
sta acr
Ida t_perif
sta perif
ldd #zero
std servicê
rts

Ida #255
sta ddra
Ida acr
sta t_acr
anda ##11100011
sta acr
Ida perif
sta t_perif
anda ##11111110
sta perif
ora ##11000000
sta perif
ora ##00100000
sta perif
Ida port_Aca1
rts

;Print title; ask for input.

;0pen the file
;successfully, or report
;an error.

;Set up for output.

;Print the file.

;Clean up and close the file.

; Restore VIA auxiliary control and peripheral
; registers.

;Make all port_A lines outputs.

;Save contents for restoration.

;Disable shift register.

;Save contents for restoration.
;Set CB1 for neg transition.

;Set cb2 for manual control.

;Put CB2 high.
;Clear the flags.

SuperPET Gazette, Vol. II, No. 7 -191- October/November 1985

send_it ldb char+1
stb port_A
Ida perif
anda ##11011111
sta perif
jsr delay
Ida perif
ora ##00100000
sta perif

test5 Ida ifr
anda ##00000010
beq test5
Ida port_Aca1
rts

;Put data on output port.

;N0T 32.
;Pull cb2 low for a couple
;of microseconds.

;Put CB2 high.

;Has nack/busy had negative transition?

delay pshs x
ldx #$0002 ; Delay of about (19+(8*x)) microseconds
loop

leax -1,x
until eq
puls x
rts

t_perif rmb 1 ;A11 data needed by program
t_acr rmb 1
in_file rmb 20

fcb 0
in byte rmb 2
out byte rmb
char rmb
len in rmb
len_out rmb 2
in mode fee "R"

fcb 0
title fcb 12 ;Clear

fee "Disk file to Centronics thru VIA"
fcb 13
fee "by P. J. Rovero 20 May 85"
fcb 13,13,0

questl fee "Input filename ?"
fcb 13,0

errorl fee "Error opening input file. Try again."
fcb 13,0

newline fdb $000d
final fee "File has been sent thru VIA."

fcb
end

13,0

HIEROGLYPHS AND ICONS The interface between people and computers has for
or, The Consequences of years seemed to us both clumsy and badly conceived.

Keyboard Machismo Our first computer ran CP/M, which was a popular
Part I operating system a few years back; we couldn't wait

to give it away (think about having to warm boot a
computer every time you change a disk. That's CP/Ml). After five years of asking
why the designers of CP/M could blunder so badly, we suspect we've found a sig

SuperPET Gazette, Vol. II, No. 7 -192- October/November 1985

nificant part of the answer: nobody who designs computers or operating systems
comprehends how professional users (other than programmers) employ keyboards and
computers.

For a long time, the only keyboard professionals were secretaries and authors.
Either could have told Digital Research (who designed CP/M) that when you pro
cess words you must have instant access to every disk you own. Who among the DRI
programmers (undoubtedly hunt-and-peckers) ever had to reorganize an entire book
on a tight deadline; assemble an appeal from a jungle of source files— or leap
from letters to invoices to dictation, as secretaries must, every hectic day? If
any had, CP/M would have been far different. CP/M was designed b£ hunt-and-peck
programmers for hunt-and-peck programmers. All computers (and most computer key
boards) are still designed by hunt-and-peckers for hunt-and-peck use.

What has the hunt-and-peck viewpoint done to keyboards? Gaze upon the keyboard
on SPET. Put your right-hand fingers on the 7-8-9-0 keys, where they're suppos
ed to be when you touch-type numbers. Is the RETURN key L-shaped and big enough
so your little finger can press it that position? Nah. Yet you can do so on that
superb old workhorse, the IBM Selectric, which has the best keyboard ever made.
Why is the + sign substituted for the colon key? Why are the brackets [] and
curly braces {} (and a lot of other keys) in non-standard locations? The design
ers didn't know any better.

SPET's keyboard is better than that on most computers. Yet, with the exception
of a few custom keyboards made for the IBM PC (and, praise be, the Selectric
layouts on the new Amiga and the Atari ST), there isn't a decent keyboard on any
computer we've ever seen.

This issue, we explore the effect of the keyboard as an input device on individ
ual users. Next issue, we'll look at the problem from a broader aspect.

* * *

The Crippled Professional What we now say applies to those who use a compu
ter professionally— programmers, authors, editors,

analysts— anyone who sits at a terminal most of the day. Suppose you are such a
professional. Suppose further that your legs are perfect but you've never learn
ed to walk. Would you crawl about the office on your hand and knees for thirty
years— on the excuse that you couldn't take the time to learn how? Hardly!

Yet we know an attorney who works long hours each day, hunting-and-pecking at
his PC; he'll probably be two-fingering the keyboard twenty years from now. Not
far down the road are two professional computer programmers who still hunt-and-
peck all they write. Some professional women hunt-and-peck (H&P), refusing to
learn touch typing, because they refuse to be classified as "secretaries."

We're told by men that "executives don't type." In the same sense, Grand Dukes
in 1890 would not condescend to drive their own carriages, although their grand
sons are fairly supple at the wheel of a Fiat. Typing has for so long been a
female, menial, and low-status task that men are repelled by a keyboard. That
will change, in time, as the computer becomes universal and as skill in using
one becomes another focus of the eternal competition between individuals.

How much time does a H&P typist waste? We tried to find out, but must general
ize. It depends on whether you use keyboard macros, on whether you enter text or
program. If you program, it depends on language. 'C' is most concise; COBOL is

SuperPET Gazette, Vol. II, No. 7 -193- October/November 1985

not. With the cooperation of the pros, we ran some trials and generally conclud
ed that touch typists program from twice to four times as fast as their H&P
brethren. Writers who touch type are from four to ten times as fast as authors
who hunt-and-peck.

Let's assume that only half your workday is spent typing, even if you will sit
in front of a keyboard most of the day for the next 20 years. How many years
will you waste if you H&P? Well, to be conservative, a programmer throws five
years of his life down the tubes. A professional writer, with equal conservat
ism, wastes at least eight years— and probably more. In a competitive world, who
can afford this terrible waste of time?

We suspect most H&? typists never think about it. They are in a sense crippled,
but not as obviously as someone crawling about the office on hands and knees.
Why don't people learn to touch-type, just as they learn to drive or cook? It's
a new problem, brought on by the computer. What was once a feminine, low-status,
secretarial art has become an essential skill. People haven't faced up to it.
And the macho, executive image is still a strong deterrent. That too will pass,
as did the Grand Dukes, as did their liveried carriage-drivers.

It seems obvious to us that touch-typing has become as essential a skill as
reading or writing— if you expect to compete. Iconographic operating systems,
such as those on Macintosh, don't bypass the issue. Sooner or later, you must
enter text from a keyboard, icons notwithstanding.

Ah, well; some of us may think that computers will soon be equipped with intel
ligent speech recognition systems. We can see ourselves struggling with speech
recognition on a new computer:

Us: "Change 'missed her' at page bottom to 'Mister1, that's capital M, small r."

Computer: "Where it says 'missed her brown'?"

Us: "Yes, and change 'brown' to 'Broun', capital B."

Computer: "Mr. B.?"

Us: "No, dammit; capital B lower case r-o-u-n!"

Computer: "Okay. Mr. Broun."

Us: "Change o-i-1 in line 1 to 'Earl'. That's capital E small a-r-1, okay?"

Computer: "Okay. Change 'oil of Norfolk' to 'Earl of Norfolk'."

Us: "Change the 'do be us' on line 12 to 'dubious'."

Computer: "Okay. Change 'do be us Dutchess' to 'dubious Dutchess.'"

Us: "Change 'breeches' to 'breaches'."

Computer: "Where it says '...fought his way into the breeches...'?"

Us: "Yeah. He was attacking a city, not attempting rape. Now change to 's-e-e,'

SuperPET Gazette, Vol. II, No. 7 -194- October/November 1985

Computer: "Which 's-e-a,' which 'too'?"

Us: "Lessee, line...14* That 's-e-a.' Line...23, that 'too'."

Computer: "That also is a s-e-a? I fail to find a s-e-a on line 23."

Us: "@##*#! @##**@*@!" [As we turn off the speech recognition software...]

We expect the keyboard will be with us for quite a few years. Should speech re
cognition come to market, how long will any of us remain sane when all about us
people curse incessantly at their computers?

* * *

How Do You Learn Touch Typing? Our handwriting is the worst in the Western
World. Because neither our teachers nor our

parents could read it, we were dragooned into a typing class, the only boy among
46 girls— a matter of small embarrassment and great opportunity. It was all we
could do to keep our hands on that old black Underwood and off the girls... We
were touch typing— if slowly— after some 30 hours of practice; our little black
book was full. In retrospect, those 30 hours were the best investment (social
or professional) we ever made.

We hestitated to run this article without offering a solution for SPETters who
want to learn to type, and so wrote a program called SuperGRIT which will teach
you to type (if you have the grit to stick with it). Then we hesitated again,
fearing that readers would think we were trying to peddle disks. We've been de
bating what to do for several months. Then we read articles in ComputerWorld
and Personal Computing which pulled no punches on the necessity for middle man
agers to learn how to use the keyboard. That did it. We decided to run the darn
article and offer the disk, which provides 25 lessons. If you have the grit and
if you persist, you should be touch typing in 30 hours of practice. You won't be
fast, for speed comes with time, but you will type faster than you formerly
hunted-and-pecked.

SuperGRIT has three lessons on touch-typing the keypad, which is simple and easy
to learn. The program remembers what lessons you practiced, and for how long.
You are drilled on all keys you miss, and receive a report on how well you've
done at the end of each lesson. We included a timer to tell you to stop and
rest, because conditioned reflexes don't form when you're fatigued from too much
practice. Write Editor, P0 Box 411, Hatteras, N.C. 27943 for SuperGRIT, 4040 or
8050 format. Price $10 U.S. Money back if you don't like it. All proceeds go to
ISPUG, not to the author. We promise you will loathe and abominate us when about
halfway through. To persist, you'll need grit.

not the ocean 'sea'! And change that ’too1 to number 2."

BINARY CONVERSION ROUTINES The best way we know to get neat, tight code on
FROM THE OLD MAESTRO any problem is to publish a long routine which

will drive all good assembly language program
mers up the wall. You then receive small, simple masterpieces which are yours
forever after. We got a bunch on the binary conversion routines published in II,
No. 5 (p. 126), and print the best of them below. Those we picked as the short
est and best came from the old maestro, Joe Bostic, who wrote BEDIT. As you scan
them, you'll see why BEDIT is so fast— Joe's code is short, sweet and simple; it
leaves you wondering why you ever did it the hard way.

SuperPET Gazette, Vol. II, No. 7 -195- October/November 1985

First, here's his version of a routine to convert an eight-character binary
string to a counting number which is returned in two bytes (high byte clear). In
this example, as in all that follow, he assumes that the binary string was pre
viously checked for entry errors, and that a buffer named "buffp" is defined:

bin2cn LDX #buffp
CLRB
LOOP
LDA ,x+
QUIF EQ
LSRA
ROLB

ENDLOOP
CLRA
STD buffp
RTS

; Index the start of the binary string; could be
; TFR d,x if parm is passed to routine in D register.

Stop on endstring null. Note that $30 (ASCII 0) has
a 0 in the rightmost bit; $31 (ASCII 1) has a 1. So,
shift the rightmost bit to the Carry Flag; then ro
tate the carry flag into B register, which holds the
counting number.
Store counting number in same buffer.

The next routine converts a binary string of from eight to 16 characters into a
two-byte counting number. It leaves X and Y registers unchanged, and will stop
even if you forget to put a null at the end of the binary string. He assumes a
call with D register holding the address of the string to be converted.

bin2cn PSHS x
TFR d,x
LDD #0
PSHS d
LOOP
LDA ,x+
CMPA #'0
QUIF L0
CMPA #'1
QUIF HI
LSRA
ROL 1,s
ROL ,s

ENDLOOP
LDD ,s++
PULS x,pc

Preserve whatever is in X.
Set up index register to string.
We'll put the result in two bytes on stack,
which we clear.

; Get a character,

; quit if it's less than $30 (ASCII 0), or

if higher than $31 (ASCII 1).
Shift first bit to carry flag, as in first
routine. Then rotate carry bit into the
two stack bytes, which hold the number.

Return with the result in D register.
Retrieve X, and get address of next instruction
into the Program Counter (in effect, RTS).

The next routine reverses the process, and converts a counting number back to a
binary string. It normally outputs eight binary characters, but if the number
should be larger than 255 it outputs 16. When you call the routine, put the num
ber to be converted in the D register. Joe's original passed the buffer address
as a parameter; we took it out because it obscured the conversion process it
self. Y register is left unchanged; X might easily be stacked if it too must be
preserved.

cn2bin PSHS d
TSTA
IF NE
LDB #16

ELSE
STB ,s

;-Stack value to be converted (passed in D Register)

; Do we have 8 characters or more than that?
; Yes, do full two-byte answer.

; Stuff low byte into empty high byte, on stack.

SuperPET Gazette, Vol. II, No. 7 -196- October/November 1985

LDB #8
ENDIF
PSHS b
LDA #'0
LDB #'1
LDX #buffp
LOOP
LSL 2,s
ROL 1,s
IF CS
STB ,x+

ELSE
STA ,x+

ENDIF
DEC ,s

UNTIL EQ
CLR ,x
LEAS 3,s
RTS

; Do 8 bits only.

; Use top of stack for a decrement register.
; Set up ASCII zero and one,
; so we can make copies.
; Point to buffer address.

; Roll a bit out of the source value high and low
; bytes and convert. See example below for what happens.
; If the Carry Flag is Set,
; it's a 1, so store ASCII 1 in buffer.

; or buffer an ASCII 0.

; Count down to zero

; End the string in a null

It isn't obvious how the LSL and ROL instructions work in the programs above, so
we diagram a few cycles below. In effect, the high byte is read first; the low
byte values are shifted to the high byte and read last. Start reading at the
right margin on each line; move to your left for each step on that line. A LSL
(Logical Shift Left) feeds a 0 to the rightmost bit in a location and puts its
most significant bit (the high bit) in the Carry Flag. A Rotate Left (ROL) feeds
the intermediate Carry Flag into the low bit of the high byte and then passes
its own high bit to the Carry Flag. We use the hex value 00FF (binary 0000 1111)
to illustrate what happens as the two stack values exchange bits through the
Carry Flag. Each line shows the result after execution:

String ROL LSL
Pass Result Final Carry High Byte Intermediate Low Byte
No. Stored: Flag (at 1,s) Carry Flag (at 2,s)

At Start 0000 0000 1111 1111
1 0 <— 0 <— 0000 0001 <— 1 <— 1111 1110
2 0 <— 0 <— 0000 0011 <— 1 <— 1111 1100
* • •
8 0 <— 0 <— 1111 1111 <— 0 <— 0000 0000

(The eighth values were just shifted to the carry flags)
9 1 <— 1 <— 1111 1110 <— all shifts are now zero.
• • •
16 1 <— 1 <— 0000 0000

This is bit-twiddling indeed ; once understood it is a handy trick. You certain-
ly do not write such code intuitively!

TABLE LOOKUP, SEARCHES, HASHING, Collecting data is simple. Organizing it
ORGANIZING DATA and so you can find one item amongst the mass
OTHER FUN STUFF is a headache. If you try to organize data

Part I on your money, your students, inventory,
stars, snails, postage stamps or the reigns

of kings, you somehow have to order the data so you can quickly find what you
want. For some unaccountable reason, there are few references in plain English

SuperPET Gazette, Vol. II, No. 7 -197- October/November 1985

on how to organize and search for information. The references we have found are
written in High Abyssinian Greek (HAG) by academics; algorithms are buried in
pages of higher math, in Pascal, "C", or psuedo-code which is never illustrated
by example (academic types lose guru status if they write clearly).

If you have the patience to decipher HAG, you find a wealth of simple and power
ful ways to organize and search data. The subject is intensely practical, no
matter what kind of information you must manipulate. Our work to date has repaid
us tenfold with new, swift and accurate ways to store and find data, both num
eric and string.

We know where this series starts, but haven't the foggiest notion where it will
end, since each new exploration opens new doors. We welcome algorithms, comments
and articles from readers as the series stumbles onward.

* * *

ORDER AND SEARCH It is fundamental that you cannot decide how to organize in
formation until you know how you will search it. The order and the search method
are wholly interdependent.

There are two fundamental ways to organize data: 1) as it randomly arrives, in
the order it arrives, and 2) in more ordered form (numeric, alphabetical, or
hashed). We are continually surprised by the effectiveness of sequential order
(storage in order of arrival) and of sequential search (start at the top of a
list, search to the end) when the user is clever about it and lists don't get
too large— particularly in slow, interpreted languages where complex code runs
slowly and simple code is relatively fast.

For large lists, you must order the data alphabetically, numerically, or by a
hashing algorithm (more later) if you must find it quickly. There is no such
thing as an optimum method to order or search. The method you employ depends
upon language, the data, and how you itend to manipulate it. Before you commit
yourself to any method, consider and test the alternatives!

Anybody who wants to suffer horribly can read "Handbook of Algorithms and Data
Structures," by G.H. Gonnet, Addison-Wesley, 1984, ISBN 0-201-14218-X. Don't
say we didn't warn you. We also plucked (read "stole") some ideas from a library
of magazine articles and from many a program sent by ISPUGgers. We'll illustrate
each method with well-structured code and with examples, and will outline the
weaknesses and strengths of each approach as this series goes on.

This issue, we cover two search methods: binary search and interpolation search.
In both, data must be either in alphabetic or numeric order.

BINARY SEARCH Binary search is a very efficient and simple way to locate
Simple and Fast an entry in an ordered table of numeric or string entries.

By "ordered" we mean that all entries must be in numeric
or alphabetical order in whatever data structure holds them (a table, matrix,
relative file, etc.). The small table at left, below, shows an ordered table of
acceptable numeric values. It could easily be a list of one hundred or one
thousand selected entries, alphabetic or numeric. Our problem is to compare any
outside value with the values in the table and to react properly if the value
is or is not found.

Why is the method called binary? Because it continues to divide a table into

SuperPET Gazette, Vol. II, No. 7 -198- October/November 1985

halves, quarters, sixteenths, thirty-seconds...until a search key is found or
isn’t. The divisions obviously are the powers of 2. Let us search the small tab

le at left for the value of 10. We first divide
10 22 24 26 40 43 44 50 55 60 ten (the number of items) by 2, obtain five,

and look at the fifth item, 40. Our key value
(10) is less than that, so we know that it must must be in the lower half of the
table (if there at all). We discard the top half of the table and have five en
tries left. We integer divide 5 by 2, obtain 2, and look at the second value,
22. Comparison again says that is too high. The second entry now becomes the top
of the table; divide that by 2, obtain 1, compare— and we have found the value.

We show below a well-tested algorithm which will perform binary search. The key
variables are defined below. We store the table in the elements of a matrix, and
employ option base 1 (the matrix begins with element 1, not 0):

loop high# = number of items in the lookup table.
... low# = the number of the lowest element in the
high# = table_entries# : low#=1 array; here, it starts as 1).
loop
mid# = (low#+high#)/2 search$ = the value we attempt to locate,
if search$ < tableword$(mid#) tableword$ = any table value,
high# = mid#-1

elseif search$ > tableword$(mid#) mid# = An integer which marks the element
low# = mid#+1 we examine in the matrix,

else
found# = 1 Binary search is efficient, the number of

endif passes through a loop to find any entry in-
until low# > high# or found# creasing much less rapidly than the number
if found# of items in the table itself. The number of
found# = 0 : do something passes needed, where n = number of items in

else the table, is about
do something else

endif log(base 2) n
• • •

endloop To make this concrete and simple, you may
easily determine the maximum number of pas

ses to find (or not find) any item in a table by using a table of the powers of
2, as shown below. Most searches will require fewer passes than the maximum:

Items in Table: 1 2 4 8 16 32 64 128 256 512 1024 2048 4096
(Powers of 2)

Maximum Passes: 1 2 3 4 5 6 7 8 9 10 11 12 13

Note that a search of a table of 63 items may be performed in six (not seven)
passes; that of a table of 511 items in nine, not ten, passes. Though binary
search is quite efficient, it can be beaten under certain conditions.

We found in John Toebes' new assembler a good example of binary table search,
in which he compares possible keyword entries against a table of keywords. We
show in "table," below, one table entry as an example of the format of all 250,
which are in alphabetical order. At the end of the routine, to make it simpler
to follow that routine, we show the stack arrangement. Note that the number of
table entries cannot exceed 255. First, we show examples of the table entries
and their labels:

SuperPET Gazette, Vol. II, No. 7 -199- October/November 1985

table
FDB ADMIT ,$013B,doadmit ; 6 bytes: address of ADMIT_ in first two.

; Table holds a total of 250 entries.

entries equ (*-table)/6

ADMIT FCS "ADMIT"

; Note the equate and the way the number of table
; entries is found here and at **, below.

; The label entry for ADMIT_, one of 250, to match
; the table entries above. ADMIT is an address.

Next is the assembly routine to perform a binary search of TABLE. The addresses
in the first two bytes of each TABLE entry point to the strings themselves. On
assembly and linking, the label ADMIT_ defines the address of string "ADMIT".

;look.asm, by John Toebes, VIII.

reserved pshs d
clra
ldb #entries-1
pshs d
• • •

lookloop loop
ldb ,s
cmpb 1 ,s
LBHI nomatch
clra
addb 1 ,s
adca #0
lsra
rorb
pshs b
Ida #6
mul
tfr d,x
ldx table,x
ldy 3,s
loop

,x+
,y

ldb
cmpb
QUIF NE
tst ,y+

until eq
puls b
quif eq
if hi

tstb
beq nomatch
decb
stb 1,s

else
incb
stb ,s

endif

;Stack address of string to be checked against table.
;Set zero as lower limit of search.
;**Set upper limit (adjust for zero start of table).
;Stack upper and lower limits.
;Do what is needed to process entries if found.

Get lower limit in B.
Compare lower limit to upper limit.
Branch to end when lower limit is the larger.

Add upper and lower limits
Compensate for results over 255, if any.
Divide result by two,
using both registers.
Save B as current index to table.
Multiply current index
by 6 (bytes per item).
Generate in X register an offset
of 6*index for address of table string value.
Get from stack address of search string.

Load table character.
Compare with search string character.
No match; stop.
End of string?
Yes, endstring null. Characters check okay to end.
Recover the current index into table.
If match, stop looking (backref to UNTIL EQ, above),
No match. Table entry larger. (Backref to QUIF NE)
Is table index zero? We're at start of table,
so quit.
No, make this location minus one new upper limit.
Current table entry is too big. Stack new limit.
(Next line backref to QUIF NE; defaults to IF L0)
No, table entry too small. Increment current index,
make it lower limit, and stack it.

SuperPET Gazette, Vol. II, No. 7 -200- October/November 1985

endloop
• • •

• • •

nomatch
• • •

rts

Stack Pointer Data:

Usual SP— >
PSHS/PULS B Stack Pointer— > -05

3,s
1 ,s
»S

;We have a match, so process it.

;We have no match; do what is needed...

Bytes Below Start
of Stack:

-01 and -02
-03
-04

Value on Stack:

Address of String to be Compared
High Limit of Search
Low Limit of Search
Revised Index to Table

SEARCH BY INTERPOLATION We wish we could broaden the range of this
Speed Demon for Number Crunchers rocket, for it will find any number in a

series of evenly distributed values faster
than any other method (for gurus, the behavior is log log n). It requires even
distribution of values because it calculates a decimal fraction of the number of
items in the table (based on the search key), and then offsets to that position
as the most probable location. Anybody who has "interpolated" a table of logari
thms knows how it is done. If the algorithm doesn't find the value at the place
calculated, it recalculates another position, much as binary search does, and
looks again. Make no mistake, this method will find values in a table even if
they are unevenly distributed, but it slows down.

Who would ever want to look up uniformly distributed data? Well, our examples,
for simplicity, use integers. Suppose you have a table of decimal fractions;
suppose you have calibrated an instrument and the values read must be changed
to the calibrated values (e.g., 10 is really 9.8466, 11 is really 1 1 .004» etc;
you read 10 from the instrument, obtain 9.8466 from the second dimension of the
table, and record the calibrated value).

This algorithm whips binary search hands-down if given appropriate data. You can
get an idea of how uneven values slow it down by trying the two sets of data be
low; one is uniform (we found all search values in one pass); the second set is
not (many passes were sometimes needed). In big tables, of course, non-uniform
values slow this approach to a crawl, though you may sometimes evade the prob-
blem (see below).

For comparison, here are typical times to find a value or report it not found
(in seconds) for tables of 40 values in mBASIC. In assembly language, this al
gorithm is superswift when properly used.

Distribution of Values: Uniform Gaps range from 1 to 6

Report Not Found <0.016 <0.016
(Value out of Table Range)

Report Found 0.018 0.018 to 0.284
(factor of 16 difference)

Report Not Found 0.018 0.018 to 0.284
(Value in Table Range)

SuperPET Gazette, Vol. II, No. 7 -201- October/November 1985

Beware the data types! Both "key" and "fraction" must be real variables. They
create a decimal fraction of the table range at which the value wanted will be
found or not found (hence the "interpolation"). If you must tabulate decimal
values, you'll have to convert many variables in the program below from integers
to reals; index# (the index to position in the matrix), low# and high# (indices
to top and bottom of the table) must always be integers.

Sequential-Interpolation Search, Option Base 1.
data 10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48 Uniform
data 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88 Values

data 10,14,15,17,20,21,22,23,24,26,28,32,34,37,39,40,41,42,43,44 Not
data 46,48,49,52,53,56,57,60,62,63,64,65,66,67,69,72,77,80,84,90 Uniform

! set# is the matrix holding the data values above.
! set may be REAL if data are in decimal form.

dim set#(40)
mat read set#
loop
input "Enter search number: ", key
low# = 1 : high# = 40
if key = ... then quit
while set#(high#) >= key and key > set#(low#)
fraction = (key-set#(low#))/(set#(high#)-set#(low#))
index# = (fraction * (high#-low#)) + low#
if key > set#(index#)

low# = index# + 1
elseif key < set#(index#)

high# = index# -1
else

low# = index#
endif

endloop
if key = set#(low#)
print "Entry found"

else
print "Not found"

endif
endloop

! KEY must be a real variable.

! Choose your own QUIT value.

! The final search value, index#, must in
! turn be an integer. Well, yes, you can
! use the integer part of "index"...
! In Pascal, "trunc" does the job.

In our tests, we found a way to continue
using this algorithm when we didn't have
uniformly-distributed values. Whenever we
encountered a value gap, we stuffed in a
dummy, and in the second dimension of the
matrix left a null value.

Assume matrix set# has two dimensions, the first one being the data value above,
the second being the converted or calibrated values we want to use. To obtain
uniform distribution, any "dummy" data value is followed by a null in the second
dimension, which is then ignored. We retain log log n behavior at slight cost—
if the series of values doesn't have so many gaps we'd go mad trying to fill all
of them with dummies.

READING SUPERSCRIPT FILES I have always thought it easier to prepare text
in the MICR0EDIT0R in a word-processor rather than in an EDITOR, the
by Martin Goebel reason being that a word-processor has line wrap

around, a feature not found in Waterloo's EDIT.
[Ed. But found indeed in the various forms of ISPUG's BEDIT.] Quite by accident,
I found a way to save text in a file readable by EDIT. The Superscript manual
describes how to save files for BASIC, but of course they are gibberish in 6809.

SuperPET Gazette, Vol. II, No. 7 -202- October/November 1985

The trick is this: rather than simply save to a file, save the Superscript text
to a background print file (a disk file) with the original menu set to an ASCII
printer. The output to the disk file is pure ASCII, which the microEDITOR can
read. The detailed procedure is as follows:

1. Prepare your text in Superscript in the normal manner.

2. If you are using some other printer (as selected from the menu at the
start of the session) reset it to the MX-80. This is done by pressing RVS and
then CLR. Superscript will ask "Restart ?" to which the answer is "y". The main
menu appears and the MX-80 printer should be selected. You will be returned to
your text.

3. Now output the text by pressing RVS+O+C+S. The C is necessary because
otherwise there is a problem at page breaks. Superscript will ask for an output
drive # and then a filename. As with all 6502 files for later use in 6809, you
should use only lower case letters in that file name.

4. That's it. The file can now be read into the EDITOR. Note that the file
name will be in capital letters. I just rename the file according to ISPUG con
vention .

[Ed. The process of sending to disk what you'd normally output to a pure ASCII
printer, as outlined above, is followed also for WordPro and Paperclip. For
details, see Vol. I, 8, p. 95 and I, 14, p« 244*]

HOW TO ABOLISH A BOOBY TRAP Well, I finally got the nerve to do some-
or, NO MORE ACCIDENTAL RESETS thing that for years has frustrated me. I'm

by Martin Goebel talking about that little bank of switches
79 Highland Drive, Wedgewood Park on the right side of SuperPET that flick it

Newfoundland A1A 3C3 in and out of 6809 and 6502 modes. Commodore
could not have located them in a more dan

gerous place. You dare not use the desk space on the right side of the computer.
Pick up a pencil or reach for a manual and you almost inevitably flick a switch,
RESETting to the wrong microprocessor and perhaps destroying hours of work.

It seemed to me that the switches belong in the space between the main housing
and the screen monitor. There they are within easy reach of eyes and fingers but
well-protected from stray pencils, rulers, books and desk debris which might
send an evening's worth of work to data heaven. For those willing to risk all,
here is how to put those switches in their rightful place. Two other hardware
changes/additions described below are worth doing at the same time.

First, unplug the computer. Raise the top of the computer and lean it against a
wall to provide ample working room. My machine is a three-boarder; after care
fully noting the way the boards were connected, I removed them. The switches
themselves were next; I recorded which one was which and the direction they tog
gled for their various modes. Drilling the correct size of hole through the
computer cover from the inside is easy.

I selected a position along the right side of the ledge between screen and lower
housing, about 1/2 inch in so that the switches would be tucked under the over
hang of the monitor. I also set them back a bit from the edge of the ledge so
that the original metal foil labels, when re-attached, would line up correctly.

SuperPET Gazette, Vol. II, No. 7 -203- October/November 1985

The labels can be peeled off the switch bracket without tearing if you do it
slowly. Now that I had the holes drilled I found that the wires on the switches
were too short to reach from the boards. This was the real problem that had de
terred me for so long.

The 6809 and the R/W switches plug into a circuit board. Unplug them; you may
with the help of a pin pull each wire (with a metal connector attached) out of
the connecting plug. I removed the wires from the connectors as well as from the
switches and replaced them with longer wires. I also have switches for the UD11
and UD12 ROM towers; rather than mess around with soldering close to the chips,
I cut these wires and spliced another piece in. Naturally, all connections were
resoldered and covered with insulating tape. Finally I replaced the boards, fas
tened the switches and stuck on the labels. With a sigh of relief, I found that
everything worked just fine.

Is this the end of the story? Well, not quite. On page 372 of CBM Professional
Computer Guide, A. Osborne et. al., are instructions for adding a capability to
switch three ways: first, to RESET the computer; second, to accomplish an NMI
(Non-Maskable Interrupt); third, to set the Diagnostic Sense of the 6522 VIA
either ON or OFF. [Ed. We later discovered that some editions of the Guide do
not mention the subject on p. 372; some do. Sigh. Find a copy that does."]

I'll not repeat Osborne's instructions here. This setup is designed for the 6502
side and works in 6809 as well. Let's look at the capabilities one by one: RESET
is a warm start for the computer. [You can accomplish the same thing in either
6502 or 6809 modes by flipping the processsor switch (6809-6502) on the right
side of SuperPET.] When you RESET, you lose all programs and data; all pointers
re-initialize, as if you'd just turned on power. It's the only way to recover
from a crash, short of turning the computer off and on again (in 6502 you can
use the Diagnostic Sense switch, enter the 6502 monitor, and recover a program).

Second, you can flip the same switch the other direction (it has two) and cause
a NMI. In 6502, this flips you into BASIC. In 6809, Diagnostic Sense may be on
or off; it doesn't matter. See the chart below; note that you can usually re
cover a program.

Condition 6502 EDIT BEDCALC mFORTRAN mAPL

Reset
D. Sense Off

Warm
Restart

Reset
D. Sense On

Enter
Monitor

Back to Waterloo Menu

Back to Waterloo Menu

NMI BASIC Edit Menu BedCalc Menu mFOR Menu mAPL Menu
D. Sense On or Off Ready Text OK Text Lost Program OK Worksp. OK

The rig requires two switches: a double pole, center-off job for RESET and NMI,
spring-loaded to return .to OFF, plus a separate switch for Diagnostic Sense.
Though Osborne used connectors, I hard-wired the necessary connections because I
have other uses for the user or parallel port. It's easy to solder a wire to the
correct lug of the port. If you make the connection close to the circuit board,
you have ample clearance to plug in a connector for some peripheral without in
terference. I also soldered the wires to the J4 and J9 connectors because I did

SuperPET Gazette, Vol. II, No. 7 -204- October/November 1985

not want to have Osborne's test clips dangling around. The two new switches were
installed behind the SuperPET switches I had already moved.

Finally, I added a 5 volt outlet at the back of the computer. 5 volts can be ob
tained from the correct lug of the cassette port (use a voltmeter to check which
one). For this addition, I installed a miniature phone jack by drilling a hole
at the back near the other outlets. Again, I soldered the wire so that the cas
sette port would never be tied up.

These changes were well worth the effort and easy to do considering that I have
no real electronics experience. You can leave infinitely looping functions in
mFOR and mAPL with NMI; the computer comes back nicely, although a few variables
are rattled loose. I tried the same thing many times and finally did manage to
scramble a workspace. I strongly recommend that any program or data be saved im
mediately after recovery with NMI; performance thereafter is not predictable.
You should re-examine anything put to disk to be certain it is still correct.

[Ed. We have two comments. First: if you always solder your panty hose instead
of the darn wire, there is a no-solder way to fix those right-side switches so
they won’t snag and flip by accident. On the SPET models with a single switch
per mount, pry 'em off with a clean, small putty knife. They're only glued on.
Smear a heavy coat of contact cement on the back of each switch and on the com
puter. Wait twenty minutes. Stick 'em on, rotated 90 degrees, so the toggles
face the front of the computer. The toggles won't snag again.

If you have two switches in a single, monolithic mount, this won't work. So get
a piece of aluminum gutter sheathing. You can cut it with shears. Make an "L"
which lies on its side like this: ______| . The piece must be deep enough (from
front to rear of the computer) to completely hide the switches. Slip the alumin

um L under SPET until its right front rubber foot rests on
and holds the L in place. You can slip a finger inside to
use the switches, but you'll have no more accidents. If you
care to be fancy, cut an access U in the upright. See the
sketch at left.

Second: We sent a copy of this material to guru Terry Peterson, who responded:
"You should point out that SPET has the capability to pull the diagnostic sense
low under software control (see p. 14 of the Systems Overview Manual) just by
setting bit 3 of $EFF8. Now for the bad news: Apparently most 2-board machines
don't have this feature included— although it requires only that you install a
jumper (pin J3 on top board to pin J9 of bottom board). This was obviously de
signed-in, but somebody at Commodore decided to save the price of the jumper!"]

T H E A . P 1 L E X P R E S S Icy IRIHX B E C K
Box 16, Glen Drive, Fox Mountain, RR#2, Williams Lake, B.C., Canada V2G 2P2

John Koch of Ottawa, Ontario sent along some utility programs for working with
directories in APL. You can sort them, split them into two halves, and print
them. One of the programs will search through the directory looking for a file
and will tell you where it is in the directory. In original form, it would do
wildcard searches on prefixes. We added a suffix search capability. Though a bit
slow on the search (it's all in APL) it is very handy for those long directory
listings which scroll by fast. The program now is menu-driven with help screens.
If anyone is interested in a listing of the functions please send me a self

SuperPET Gazette, Vol. II, No. 7 -205- October/November 1985

addressed envelope and a dollar for stamps and copying. An explanation of how
to set up the help screens will be included. The program will be included on the
next ISPUG utilities disk, but that won't be for some time.

The remainder of this column is devoted to relative files. Most readers should
be familiar with simple file terminology. The definitions of a few terms follow
for those who are not. The discussion will be restricted to text files.

data:
record:
field:

file:

relative format:

key:

Characters having meaning.
A collection of related data.
A subsection of a record, typically consisting of one data

element such as a name, part number, price, address, etc,
A collection of related records, such as an employee file,
an inventory file, etc.

Fixed length records. Each record has the same length as
the longest record in the file. Each record is numbered
and may be accessed by record number in any random order.

A data element which is associated with a record number so
that the corresponding record may be accessed in a mean
ingful way. The data in a specific field is typically
used as a key.

Disk space will be wasted when using relative records. This can't be avoided,
because each record is padded to be as long as the longest one. In APL, it is
convenient to treat each record as a row of a matrix. If fixed field lengths are
used, the field divisions in each record will line up in the matrix into groups
of columns per field, which simplifies file handling. The entire file can be
viewed as a matrix, even if it is too large for main memory. When the file is
initially being created records can be filed in batches, using the QUAD APPEND
function. If the batch being filed is a matrix, a single QUAD PUT statement will
write each row of the matrix as an individual record.

The maximum record length in a relative file is 254 characters. When the file is
being created, the number of characters in the longest record is stated as part
of the file name. (F:200)TEST,REL would be the correct name for a relative file
named TEST which has a fixed record size of 200 characters on drive zero of disk
unit 8. Other device designations are inserted between the bracketed prefix and
the rest of the file name. (F:200)DISK9/1 .TEST,REL is the correct syntax for
drive 1 of device #9. If the size is left out of the file name it defaults to 80
characters. (F)TEST,REL is the same as the previous file except that each record
is 80 characters long. Because the prefix (byte size) is not displayed on a dir
ectory listing, you must record it elsewhere (in the above case, the directory
would show TEST only as a RELative file). Additional information, such as record
length, number of records in the file, field positions and names can be stored
in a sequential file. This file can accessed before any updating of the relative
file is attempted and can itself be updated after the user is finished with the
relative file.

One often reads that file handling is "not well developed" in APL. What has el
uded the critic of APL's ability to handle files is the power of APL's matrix
manipulation primitives and idioms. There may be more complex filing functions
in other APLs, but in Waterloo APL V1.1 the functions are simple. The hard work
of creating, editing and updating the records can be easily handled by matrix
manipulation.

SuperPET Gazette, Vol. II, No. 7 -206' October/November 1985

The following are simplified examples of functions for manipulating a relative
file. The first set are for creating the file, reading it and adding to it.

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9

10
11

ICREATEIUI*
CREATE NAME ;Q10
"THIS function initially creates the file
"AND FILES A BATCH OF RECORDS CONTAINED IN MAT.
"THE FIRST ELEMENT OF pMAT IS THE NUMBER OF
"RECORDS INITIALLY FILED.
"THE MAXIMUM RECORD NUMBER IS ONE LESS THAN
"THIS SINCE RECORD NUMBERS ARE IN INDEX ORIGIN 0.
NAME QCREATE 1
MAT □PUT 1
UUNTIE 1

VREADlBlV
N READ NAME ;□10; A
"N IS THE RECORD NUMBER TO BE READ AND IS IN
"INDEX ORIGIN 0.
UI0+- 0
NAME \JTIE 1
USEEK 1,N
DGET 1 t&2-\r(AA~ 1+0iA'*-*\NAMEe* () ’)/NAME
UUNTIE 1

WRITE LU^
N WRITE NAME ;D10
"IF N IS ONE GREATER THAN THE LAST RECORD NUMBER
"ALREADY IN THE FILE, IN INDEX ORIGIN 0, THIS FUNCTION
"APPENDS MORE RECORDS CONTAINED IN MAT TO THE END OF
"THE RELATIVE FILE NAMED. IF MAT CONTAINS ONE RECORD
"AND N IS A RECORD NUMBER WHICH ALREADY EXISTS, A NEW
"RECORD IS WRITTEN TO THAT NUMBER.
Q10*0
NAME WPDATE 1
USEEK 1 tN
MAT □PUT 1
UUNTIE 1

In the above functions, QUAD UPDATE will work for both reading and writing
operations. QUAD TIE will only work for read operations. Examples of the syntax
follow:

NAME-*-* (F: 19) TEST tREL»

MAT+-8 79p 'B00GAL00'
CREATE NAME "CREATES THE FILE AND FILES THE 8 ROWS OF MAT AS THE

"FIRST 8 RECORDS IN THE FILE.
5 READ NAME "READS 5TH RECORD (INDEX ORIGIN 0).
MAT<-79p'X' "SINGLE ROW TO FILE.
6 WRITE NAME "FILES THE NEW MAT AS RECORD 6 {INDEX ORIGIN 0).
MATISp'OSHGOSH' NEW RECORDS AS ROWS OF MAT.
8 WRITE NAME "FILES THE 4 NEW RECORDS AFTER THE ORIGINAL 8.

"REMEMBER THE 8 RECORDS ARE NUMBERED FROM 0 TO 7 IN
"INDEX ORIGIN 0 SO THE NEW ONES START AT 8.

Each subsequent use of QUAD GET reads the next record. Writing a loop to read a

SuperPET Gazette, Vol. II, No. 7 -207- October/November 1985

block of records at once is an exercise for the reader. A recursive form should
be possible, too.

You must use the entire file name if you wish to erase it from the disk.

UERASE '(F:200)TEST,REL'

While developing an entire file handling package is beyond the scope of this
column, we will examine some of the idioms available and look at a few expres
sions to see what is possible. Idioms:

,4a~1 4- 0 ,A*-*\TEXTe ' 0 1 fiFINDS TEXT BETWEEN BRACKETS.
X*.=Y ^COMPARING VECTOR Y WITH ROWS OF ARRAY X.
M,B)U(ip/D ,(pB)ptf] r\PUT THE VECTOR B INTO THE VECTOR A AT

fl.POSITION N.
TlAtA+(*B-A)*\\B-A] fiFINDS STRING IN TEXT T BETWEEN INDICES A AND B.

The first idiom was used in the function READ to get the record size from the
file name. The text between the brackets in a file name could be F:200, for
instance. If the first 2 characters are dropped, we have the record size in
numerical characters. The execute function changes these characters into the
number 200. QUAD GET is followed by a 2-element integer vector. The first ele
ment is the tie number specified after QUAD TIE, the second is the record size.

The second idiom may be used to find the record number in a key matrix. The
result obtained when this idiom is returned is a boolean vector (zeros and ones)
in which the ones are the row positions, where Y is a row of X. As an example,
suppose the key matrix had as its rows the last name fields of the file with the
record number added, ie:

Smith 000 We have two Jones in the file. When
Jones 001 this occurs in a key file they are
Rumplestiltskin 002 called synonyms. The file handling
Aardvark 003 program could display all synonyms in
Jones 004 sequence, with first names and initials
Machinery 005 added until the correct one is shown.

If X is the above key matrix (minus the last 3 columns) and Y is Jones suitably
padded with spaces, the idiom would return 0 1 0 0 1 0 which could be used to
select the 1st and 4th rows (index origin zero, remember) of the key matrix.
Picking the last three characters off these two rows and executing them would
give us the record numbers. If there were over 999 records (whew!) the record
numbers could consist of four characters. In APL:

KEY*-'JONES*
W>(0 ,Z)\$KEYMAT Ft REMOVES LAST 3 COLUMNS OF THE KEY MATRIX.
Y+-KEY,(Cl*pX)-pKEY) p' ' nPADS OUT THE KEY WITH PROPER NUMBER OF SPACES.
ZHXA .=Y)tKEYMAT nSELECTS 1ST AND 4TH ROWS OF KEYMAT.
Z«-(0,19)+Z r\FINDS RECORD NUMBERS AS A MATRIX.
!,Z,» » a OBTAINS THE RECORD NUMBERS.
1 4
YMAT ftSELECTS 1ST AND KTH ROWS OF KEYMAT.
Z«-(0,19)+Z fiFINDS RECORD NUMBERS AS A MATRIX.
!,Z,f ' ^OBTAINS THE RECORD NUMBERS.

SuperPET Gazette, Vol. II, No. 7 -208' October/November 1985

These expressions are combined in the function MATCH which follows. If the key
matrix, KEYMAT, is in the workspace, MATCH will return the record number or num
bers if there is a match. If the key is not in the key matrix MATCH returns -1.

VMATCHUJ]
0] R «- MATCH KEY \X\Y\Z

1] M > (0 ,3)*$KEYMAT
2] Y<-KEY,(Cl*pX)-p,KEY)p' '

3] Z H Q »19) + (X a .=Y)S KEYMAT

4] -K(l+pZ)=0)/N0MATCH
5] R*-t,Z,' '
6] -K)
7] N0MATCH:R*-~1

8] V

The last two idioms can be used to insert new fields into old records and to ex
tract fields from records.

* * *

Some SuperPET users may have taken advantage of bargain prices for the Commodore
SFD-1001 drive. This drive is essentially half an 8250 and offers a megabyte of
storage on both sides of a single disk. The full megabyte can be used to store
up to 65535 relative records in a single file. The SFD-1001 is read/write compa
tible with the 8050, with some reservations. To read or write 8050-formatted
relative files in an SFD-1001 drive, the "expanded relative file" feature of the
SFD-1001 drive must be disabled. The two functions DISERF and ENERF will disable
and enable this feature.

VDISERFlUlV
[0] DISERF N ;Q10
C 1] IS THE DISK UNIT NUMBER (IE; 8 OR 9)
[2] ('IEEE'AlN) ,,+15») [TREATS 1 +010-0
C 3] (»|+w\OW[164 67 1 255])UPUT 1
[4] UUNTIE 1

VENERFlUlV
[0] ENERF N ;Q10
[1] nN IS THE DISK UNIT NUMBER (IE; 8 OR 9)
[2] ('IEEE' AlN) 15*) UCREATE 1 -CUOH)
[3] (»|+a\0W[164 67 1 0]) □PUT 1
[4] UUNTIE 1

The "expanded relative file feature" is automatically enabled on power up and
may also be re-enabled by powering down or resetting the drive.

Appendix E on page E1 of the Disk System User Reference Guide discusses an error
in relative files in all Commodore drives. A file can be corrupted if a particu
lar program sequence is used to update files. If you have problems with relative
files, this may be the cause.

TALKING TO YOUR PET VAX [Ed. We recently received a clever program from some
by Stan Brockman SPET folks in Canada who were having trouble upload-
Associate Editor ing files from a SuperPET to a VAX. We'd had reports

from Stan Brockman of similar problems, so we asked
him for a summary on telecommunications between SPET and VAX, which follows.]

SuperPET Gazette, Vol. II, No. 7 -209- October/November 1985

I routinely upload and download files between my SuperPET and a VAX, using the
NEWTERM program on the ISPUG master telecommunications disk, with a VAX running
VAX/VMS Version 4 . The program translates the linefeeds (ASCII $0A) received
from the VAX into nulls by default. I did only one thing to tailor NEWTERM for
the work: changed the outgoing translation table in NEWTERM so that SPET's code
for the DELETE key ($04) is sent to the VAX as ASCII DEL ($7F). This makes it
simple for me to correct my typos. You do this quite easily in the monitor by
changing the byte at $7138 (in the translation table) from $04 to $7F.

When communicating, I enable Full Duplex (Half Duplex is the default) and employ
the default upper-lower case mode. These settings and the revised translation
table in NEWTERM can then be saved to disk in a file configured especially for
TC with a VAX (I call mine VAXTERM), using the command built into NEWTERM for
that purpose. Once you have the program configured, all that's left is to set
the baud rate, call the VAX, and log in.

Downloading files from the VAX to the SPET is fairly straightforward, except
that a few unwanted blank lines are put into the file. The procedure is to en
ter the VAX command, "TYPE file_name", but before hitting <RETURN> to press
PF8 and answer the prompt with the name of the file under which SPET is to save
the received file. Then you press <RETURN> to start the listing from the VAX.
You use PF. to close the file after it has been received. You can edit out the
unwanted blank lines later. (Does anybody know of a way to avoid the blanks?)

Uploading files to the VAX has been a problem for me and for others. Except for
the shortest of files, the VAX always aborted the process of storing the trans
mitted data; it detected an "Output Buffer Full" error. I was frustrated for
months tryng to convey the essence of my problem to our System Manager and then
uselessly trying his suggestions. Eventually, my persistence paid off. We found
that _if the VAX's echo is shut off, the entire file is received and stored. It
isn't yet clear why the error occurred, but it seems that the VAX output buffer
overflowed while trying to transmit more characters than it had received.

For example, the VAX echoes each <RETURN> with a <RETURN> and a linefeed. At
baud rates of 150 and above, it was unable to squeeze the extra characters into
the return (echoed) transmission to SuperPET. The output buffer is not capaci
ous on our VAX; it fills quickly and generates the error.

So, what is the upload procedure? Prior to transmitting an ASCII file to a VAX,
execute the VAX command, "SET TERMINAL/NOECHO". Because the VAX will no longer
echo, press PF7 to switch SPET to local echo, so you can see what you are typ
ing. Then get the VAX ready to store the file you are about to send by entering
"CREATE file_name" <RETURN>, hit PF9 on the SPET, and answer the NEWTERM prompt
with the name of the file to be sent. You can now rewarm your coffee while SPET
and NEWTERM do the rest. When the file has been transmitted, you send VAX a CON
TROL Z to close its file. The result should be a file without extra blank lines
stored on the VAX. The procedure has worked well for me.

I've checked the SET TERMINAL/NOECHO procedure above at speeds up to 1200 baud,
with no problems, and have successfully transferred data with NEWTERM at 4800
baud on a direct connection with the echo so shut off.

I'd appreciate hearing of simple procedures used by others, especially if there
is one which avoids the blank lines on downloads. I've heard a rumor of the ex

SuperPET Gazette, Vol. II, No. 7 -210- October/November 1985

istence of KERMIT, running on SuperPET... Can anyone confirm this or let me know
how to get it?

WINDOW INTO 0S9 You may have wondered why an 8050 REL file may
by Gerry Gold and Avy Moise hold only 160-178K of data in 0S9. You also must

have noticed that all 0S9's RELATIVE files are
named ' 0S9 DRIVE A1. Most CBM 8050 drives cannot handle RELATIVE files larger
than 178K. We realize that this restriction may become bothersome, so as a tem
porary solution the user can build two logical file system on each 8050 drive,
thus extending the storage capacity of an 8050 single drive to about 350K.

On the 'Super-OS/9 B09+M0D' disk, you will find two files, 'd8d8' and fd8d9'.
These files represent two different configurations of the 0S9 L0AD/B00T module,
which is found on your SYSTEM disk (default is 0S9=d8d8). 'd8d9f lets you access
four logical drives, resident on two CBM dual drives, addressed as units 8 and
9. 'd8d8' will allow access to four logical drives resident on one CBM dual
drive system, addressed as unit 8. The first RELATIVE file system on each drive
is referred to as '0S9 DRIVE A1. The second file system on each drive is known
as ' 0S9 DRIVE B'. In the release version, we have copied *d8d8' into 0S9; it
therefore will support two logical drives on each physical disk:

disk8/0.os9 = d8d8 | d8d9

0S-9 name

/DO
/D1
/D2
/ D3

Waterloo OS name 'ii
(f:129)disk8/0.0S9 DRIVE A,rel |
(f:129)disk8/l.0S9 DRIVE A,rel |
(f:129)disk8/0.0S9 DRIVE B,rel |
(f:129)disk8/l.0S9 DRIVE B,rel |

Waterloo OS name

(f:129)disk8/0.0S9 DRIVE A,rel
(f:129)disk8/l.0S9 DRIVE A,rel
(f:129)disk9/0.0S9 DRIVE A,rel
(f:129)disk9/l.0S9 DRIVE A,rel

0S9: BACKUP This command is similar to the CBM DOS command * C1 =0 * or 1 C0=11 .
The main similarity is the fact that in both systems the floppy disks must be
identically formatted before the copy command may proceed. In OS-9, you must
create a dummy file system (using the FORMAT utility) with attributes that
exactly match those of the floppy which you wish to backup (i.e. same number of
cylinders, density and sides). Then and only then will the command succeed.

COMPUTER FOR SALE Emory B. Antonucci of 801 North Ashton Street, Alexandria,
VA 22312 (703 354 8495) used his SuperPET at work and, having retired, wants to
sell it and his 8050 drive, language and tutorial disks, all Waterloo language
manuals (excepting COBOL), all CBM reference manuals, together with installed
WordPro and InfoPro ROMs and manuals. His 3-board SPET and drive are in operat
ing condition. Write or call. Asking price is $750 for the package.

SPET with CP/M for Sale Gary Hermann of 16906 Big Falls Road, Monkton MD
21111 (301 357 8016 after 6 p.m. on weekdays) offers for sale at $1200 a SPET
with an 8050 drive, ADA 1800 interface, and SSE CP/M system, Borland's Turbo
Pascal, Nevada CP/M editor, and other miscellaneous software.

LANGUAGE COVERAGE Only two languages in SuperPET aren't covered by hundreds
ONCE AGAIN LIGHTLY of books— microBASIC and Waterloo's Assembly Language. We

therefore cover both intensively because you have no oth
er source of information. We do make an exception for APL because of the its
implementation on SuperPET, and SPET's small workspace.

SuperPET Gazette, Vol. II, No. 7 -211- October/November 1985

We're happy to cover mFORTRAN, mPASCAL, or mCOBOL if there are bugs in languages
as found in SuperPET, or tips which are peculiar to using that language on SPET.
But space won’t let us print lots of programs in all languages— there's no room.

We'd love to get programs in any language which are unusal, powerful and short,
particularly if they hook into SuperPET1s library or operating system and demon
strate how to use that language as implemented in SuperPET. But please document
what you send in— there are hundreds of you and only one editor— and there's no
time to guess at the intent of what you send. Twenty minutes per letter does ye
ed have, and if in that twenty minutes it isn't clear how to use what you send,
we have to pass on to the next letter or disk. The ratio of readers and writers
to editors in this organization is not mano e mano!

We haven't had much in the way of contributions from people who use mPASCAL or
mCOBOL, which is bad. We doubt the implementations on SuperPET are bug-free, and
we suspect there are some good ways to bypass problems with those languages in
SuperPET. Why not share your knowledge or confess your ignorances?

BOOBOOS IN BOOLEAN In several SPET languages you can state boolean relations
improperly without a syntax error but have your program it

self bomb. We show an example below. If you try to parse the example, you'll
get nowhere. You must use paren-

if variable_1 or variable_2 and variable_3 theses, as in the second example,
do thus and so [Fails] If you leave the parens out, your

results can be strange indeed. Be
if (variable_1 or variable_2) and variable__3 careful with "if var", for, de-
[Runs okay. Shift parens; meaning changes.] depending upon language, it may

mean "if > 0" or it might mean
"if not 0". Variables can, of course, hold negative values....

Prices, back copies, Vol. I (Postpaid), $ U.S. ; Vol. I, No. 1 not available.
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50 No. 14: $3-75
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3.50 No. 15: $3.75
No. 4: $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75 Set: $36.00
------------------------------ Volume II-------------------------------------

Numbers 1 thru 7: $3.75 each.
Send check to the Editor, P0 Box 411, Hatteras, N.C. 27943. Add 30# to prices
above for additional postage if outside North America. Make checks to ISPUG.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)
[] Check if you're renewing; clip and mail this form with address label on the

reverse side. If you send the label, don't fill in the form below.

Name: Disk Drive: Printer:

Address:__ ______________________
Street, P0 Box City or Town State/Province/Country Postal ID#

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUES ELSEWHERE: $25 U^S. Mail to: ISPUG, P0 Box 411,
Hatteras, N.C. 27943, USA. SCHOOLS!: send check with Purchase Order. We do not
voucher or send bills.

SuperPET Gazette, Vol. II, No. 7 -212- October/November 1985

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943. Please mail all inquiries, manuscripts, and applica
tions for membership to Dick Barnes, Editor, PO Box 411, Hatteras, N.C. 27943.
SuperPET is a trademark of Commodore Business Machines, Inc.; WordPro, that of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1985,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. TPUG and members of ISPUG may copy any material. Send
appropriate postpaid reply envelopes with inquiries and submissions. Canadians:
enclose Canadian dimes or quarters for postage. The Gazette comes with member
ship in ISPUG.

ASSOCIATE EDITORS
Terry Peterson, 8628 Edgehill Court, El Cerrito, California 94530
Gary L. Ratliff, Sr., 215 Pemberton Drive, Pearl, Mississippi 39208
Stanley Brockman, 11715 West 33rd Place, Wheat Ridge, Colorado 80033
Loch H. Rose, 102 Fresh Pond Parkway, Cambridge, Massachusetts 02138
Reginald Beck, Box 16, Glen Drive, Fox Mountain, RR#2, B.C., Canada V2G 2P2
John D. Frost, 7722 Fauntleroy Way, S.W., Seattle, Washington 98136

Table of Contentsf Issue 7, Volume II
Chaining Bug, mBASIC........ 2031 Address Changes........... .
Long Lines in Editors......185 APL Character Set on 4022.'.......
Change to Language Exit Commands.186
Output on Parallel Printers.,
Binary Conversion Routines..,....195 Part I, Search and Organization. . ,

Interpolation Search........... ..

No More Switch Booby Traps...... ..

Uploading to a VAX............. ..

Computers for Sale............. ...211
Gazette Language Coverage Booboos in Boolean..............

SuperPET Gazette
P0 Box 411
Hatteras, N.C. 27943
U.S.A.

First Class Mail
in U.S. and Canada.
Air Mail Overseas.

